Flattening and Subanalytic Sets in Rigid Analytic Geometry

نویسندگان

  • T. S. Gardener
  • Hans Schoutens
  • H. SCHOUTENS
چکیده

Let K be an algebraically closed field endowed with a complete nonarchimedean norm with valuation ring R. Let f : Y → X be a map of K-affinoid varieties. In this paper we study the analytic structure of the image f(Y ) ⊂ X; such an image is a typical example of a subanalytic set. We show that the subanalytic sets are precisely the D-semianalytic sets, where D is the truncated division function first introduced by Denef and van den Dries. This result is most conveniently stated as a Quantifier Elimination result for the valuation ring R in an analytic expansion of the language of valued fields. To prove this we establish a Flattening Theorem for affinoid varieties in the style of Hironaka, which allows a reduction to the study of subanalytic sets arising from flat maps, i.e., we show that a map of affinoid varieties can be rendered flat by using only finitely many local blowing ups. The case of a flat map is then dealt with by a small extension of a result of Raynaud and Gruson showing that the image of a flat map of affinoid varieties is open in the Grothendieck topology. Using Embedded Resolution of Singularities, we derive in the zero characteristic case a Uniformization Theorem for subanalytic sets: a subanalytic set can be rendered semianalytic using only finitely many local blowing ups with smooth centres. As a corollary we obtain that any subanalytic set in the plane R2 is semianalytic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flattening and analytic continuation of affinoid morphisms: remarks on a paper of Gardener and Schoutens

We give an example of an affinoid curve without analytic continuation. We use this to produce an example of an affinoid morphism that cannot be flattened by a finite sequence of local blow-ups. Thus the global rigid analogue, [7], Theorem 2.3, of Hironaka’s complex analytic flattening theorem is not true. Since this is a key step in the proof of the affinoid elimination theorem, [7], Theorem 3....

متن کامل

Uniform Properties of Rigid Subanalytic Sets

In the context of rigid analytic spaces over a non-Archimedean valued field, a rigid subanalytic set is a Boolean combination of images of rigid analytic maps. We give an analytic quantifier elimination theorem for (complete) algebraically closed valued fields that is independent of the field; in particular, the analytic quantifier elimination is independent of the valued field’s characteristic...

متن کامل

Rigid Subanalytic Sets

Let K be an algebraically closed field endowed with a complete non-archimedean norm. Let f : Y → X be a map of K-affinoid varieties. In this paper we study the analytic structure of the image f(Y ) ⊂ X; such an image is a typical example of a subanalytic set. We show that the subanalytic sets are precisely the D-semianalytic sets, where D is the truncated division function first introduced by D...

متن کامل

ANALYTIC p-ADIC CELL DECOMPOSITION AND INTEGRALS

We prove a conjecture of Denef on parameterized p-adic analytic integrals using an analytic cell decomposition theorem, which we also prove in this paper. This cell decomposition theorem describes piecewise the valuation of analytic functions (and more generally of subanalytic functions), the pieces being geometrically simple sets, called cells. We also classify subanalytic sets up to subanalyt...

متن کامل

Analytic P-adic Cell Decomposition and P-adic Integrals

Roughly speaking, the semialgebraic cell decomposition theorem for p-adic numbers describes piecewise the p-adic valuation of p-adic polyno-mials (and more generally of semialgebraic p-adic functions), the pieces being geometrically simple sets, called cells. In this paper we prove a similar cell decomposition theorem to describe piecewise the valuation of analytic functions (and more generally...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005